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The problem of the stability of the flow of viscoelastic fluids has fundamental importance for 
the technology of the production of polymer products and viscosimetry.  This problem is not 
reduced only to classical  inertial  turbulence. A number of other  mechanisms leadingto flow 
instability a r e  known [1, 2]. A thermal  mechanism based on the allowance for dissipative 
heating and elastic p rope r t i e s  within the f ramework of  a l inear model of a viscoelastic fluid 
was drawn upon to explain this phenomenon in [1]. The possibility of a self-osci l la tory mode 
of flow was demonstrated on the basis of a qualitative analysis of the rheological equation and 
the equation of heat balance in application to simple shear flow and uniform stretching. A 
theoretical  analysis of the self-heating of flowing systems possessing viscoelastic propert ies  
is ca r r i ed  out in the present  repor t .  The main laws of the thermal instability of viscoelastic 
fluids discovered in [1] a re  described.  

1 .  S t a t e m e n t  o f  t h e  P r o b l e m  

At the foundation of the analysis we place the  Maxwell l inear model of a viscoelastic fluid, 

i ~ i u (i.l) 

w h e r e T  is the s t ress  tensor;  D is the deformation-rate  tensor; G is the elastic modulus; p is the viscosity; 
t is the time, 

In the general case G and/~ are  functions of the thermodynamic quantities such as the temperature  T 
and the density p.  For  simplicity inthe future we take G = const and p = const, although the viscosity is assumed 
to depend on temperature:  /~ =/~ (T) .  The main assumptions about the character  of the flow are  reduced to 
the requirements  of: 

a) uniformity of the deformation, i.e., constancy of I~ over the volume of the fluid, with the dependence 
(t) assumed to be known; 

b) constancy of the tempera ture  over the volume of the fluid. Under these assumptions Eq. (1.1} is 
closed by one equation of heat balance 

cpdT/dt = q~, T) - -  cc(T - -  To), (1.2) 

where ~ is the coefficient of heat t r ans fe r  f rom the surface of the fluid; c is the specific heat of the fluid; T O 
is the tempera ture  of the surrounding medium. The dissipative function q(~-, T) is determined by the i r r e -  
vers ible  viscous deformation, and for simple shear flow it has the form 

q (<  T) = I 1% (r) = Z Cr). 
"t~.7 

The described model is analyzed for  Couette flow between two coaxial cylinders rotating about the axis 
with different constant velocities.  In this case  only the tangential components Dr,~0=D and Tr,~0=r of the 
tensors  D and ~- a re  different from zero and Eq. (1.1} is scalar .  We will take D =const. The temperature  
dependence of the viscosi ty  is assigned by the Reynolds equation: 

[t = [t o exp [--~(T -- To)] ([t0~ ~ "-  const). 

" Chernogolovka. Translated from Zhurnal Prildadnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 115- 
122, May-June, 1979. Original ar t ic le  submitted March 13, 1978. 
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T h r e e  c h a r a c t e r i s t i c  t i m e s  can  be dis t inguished in the  p rob lem:  

to = (cp)/a, t~ = (cp)/(~oD')~ t~ = ~JG,: (1.3) 

where  t o is  the t i m e  of heat  t r a n s f e r ;  t 1 i s  the  t i m e  of heat  release;,  t 2 is  the elast ic  r e l axa t ion  t ime .  

We int roduce the d imens ion les s  quant i t ies  through the  equations 

e = ~ ( T  - -  To) ,  a = T/(GDto),: x = t/4,~ 8 = to / t~  ~ = to/h .  (1.4) 

Then Eqs .  (1.1) and (1.2) t ake  the  f o r m  

d ~ t d ~  = I - -  ~}r e ,  d ~ l d x  = x ~ e  ~ - -  ~. (1.5) 

The  choice  of d imens ion less  p a r a m e t e r s  in (1.4) is  dif ferent  f r o m  that  of [1]. The p a r a m e t e r s  ~ and 
6 e x p r e s s  the intensi ty of  heat  r e l e a s e  and the  va r i a t ion  in e las t ic  ene rgy  with r e s p e c t  to the  h e a t - t r a n s f e r  
in tensi ty ,  r e s p e c t i v e l y .  An i s o t h e r m a l  mode  of  flow o c c u r s  a s  ~ - *  0 while an adiabat ic  mode  o c c u r s  a s  ~ ~ .  
The  e a s e  o f  8 -*0 c o r r e s p o n d s  to a soft  spr ing in the e las t ic  e lement  of  the  Maxwell  model ,  when the elast ic  
deformat ion  develops  slowly (tin-* ~),  while the  c a s e  of 6 - ~ o  c o r r e s p o n d s  to a st iff  spr ing,  when the  behavior  
o f t h e  mode l  dur ing deformat ion  is  de te rmined  by the v i scous  e lement .  

Q u a l i t a t i v e  A n a l y s i s  

A s a function of the s t r u c t u r e  of  the  s ta t ionary  point (~0, | in the sy s t em (1.5), de t e rmined  f r o m  the 
equat ions 

e - e ,  = ~ ee" (2.1) 

the following three regions in the quadrant ~0 > O, | > 0 were distinguished in [1]: 

@o > i -4- t/%; (2.2) 

t + 3/eo --  2 V 2  (t + tt~0)/r < Oo < t + thr0; (2.3) 
0 <  ~o < 1 A- 3/zo - 21f2(t A- t /%)/~.  (2.4) 

In the reg ion  (2.2), which is the reg ion  of  instabi l i ty  of the s ta t ionary  point, the s y s t e m  (1.5) admi t s  a s table  
l imi t ing  cyc le .  A proof  of the  ex is tence  of a l imi t ing  cyc le  can  be found in [3]. Phys ica l ly  th is  m e a n s  the  
ex i s tence  of a s e l f - o s c i l l a t o r y  mode  of flow in which the s t r e s s  and t e m p e r a t u r e  undergo per iodic  osc i l l a t ions  
in t ime .  

In the r eg ion  (2.3) the  s t a t ionary  point is  a s table  ~focus," which c o r r e s p o n d s  to a mode of flow with 
damped  osc i l l a t ions  of the s t r e s s  and t e m p e r a t u r e  in t ime~ 

In the  reg ion  (2.4), whe re  the  s ta t ionary  point is a s tab le  "node,"  a s table  mode of flow is  resJLized. 

In the  given c a s e  the poss ib i l i ty  of  o sc i l l a to ry  modes  is connected with the  in terac t ion  of an e las t ic  de-  
f o r m a t i o n  and the  t h e r m a l  f a c t o r s .  On the  one hand, an elast ic  d ~ o r m a t i o n  of the spr ing in the  Maxwell  model  
with D =cons[  leads  to an i nc r ea s e  in the s t r e s s ,  while on the o ther  hand, the d i ss ipa t ive  se l f -hea t ing  of the  
fluid and the  d e c r e a s e  in v i scos i ty  connected with it c ause  a d e c r e a s e  in s t r e s s .  And the  c o n c u r r e n c e  of  t he se  
f a c t o r s  is  the  r e a s o n  fo r  the t h e r m a l  instabi l i ty .  H e r e  the main  point is the s t rong t e m p e r a t u r e  dependence 
of the  v i scos i ty ,  which p rov ides  for  the  p r e s e n c e  of a " feedback"  effect .  

We can obtain a desc r ip t ion  of the  r eg ions  (2.2)-(2.4) in the plane of the  p a r a m e t e r s  ~ and 6.  If we set  
= 1 / ~ 0  then f r o m  (2.1)-(2.3) we obtain  a p a r a m e t r i c  r e p r e s e n t a t i o n  of the  boundary F 1 separa t ing  the reg ion  

I o f  s e l f -osc i l l a t i ons  f r o m  the reg ion  II  of  damped  osc i l l a t ions  and of the boundary F 2 separa t ing  the reg ion  H 
f r o m  the region I~  of  s table  flow: 

FI: 8 =  ~ exp ( - - t  - -  ~), u ~-- ~2(t -~- ~) exp (i + }); 

I'2:5 = ~ exp (-- I - -  3~ + 2"1/2~(1 A- ~)), • = ~(~ -- 3~ - -  2V-2"~ + ~))/& 

A d i ag ram of these  r eg ions  is  p r e sen t ed  in Fig .  1. F r o m  i ts  ana lys i s  it i s  seen  that  se l f -osc i l l a t ions  a r e  
imposs ib le  both a t  l a rge  6 (6 > 1 /e  2) and at smal l  ~ (~t < e). Th is  m e a n s  that  the  development  of s e l f - o s c i l -  
la t ions  is connected with a c e r t a i n  combinat ion  of the v i scoe las t i c  p r o p e r t i e s  of  the m a t e r i a l  and of the con-  
dit ions of  heat  t r a n s f e r .  In the i so the rma l  c a s e  ( ~ -  0) a s tab le  mode  of flow o c c u r s  fo r  all  va lues  of  6. With 

* T h e r e  is a m i s p r i n t  in the  exp re s s ion  for  the  lower  boundary  of  the  region (2.3) in [1]. 
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f ixed t h e r m a l  p a r a m e t e r s  co r r e spond ing  to smal l  va lues  o f ~  ( ~ < e ) t h e  o s c i l l a t o r y  mode  is  r e a l i z e d  only at 
i n t e rmed ia t e  va lues  o f  the e las t ic  r e l axa t i on  t i m e  t2, while the  flow is s table  at  suff iciently l a r g e  and sma l l  
va lues  of  6.  In  the  adiabat ic  c a s e  ( ~ - ~ )  the  osc i l l a t ion  reg ion  p r ac t i c a l l y  d i s a p p e a r s .  

3 .  L i m i t i n g  C a s e s  

The  v a r i o u s  l lmi t ing  r e l a t i o n s  between the  c h a r a c t e r i s t i c  t i m e s  (1.3) d e s e r v e  specia l  cons idera t ion .  
The  m o s t  i n t e re s t ing  p r o v e  to be  the  two l imi t ing  c a s e s  

to > t,(8 > t)~ to << t,(6 < t), 

which we ca l l  the c a s e s  of  mechan ica l  and t h e rm~!  quas i s t ead iness ,  r e s p e c t i v e l y .  F o r  the i r  ana lys i s  it is  
convenient  to in t roduce a new no rma l i za t i on  of  the s t r e s s .  We se t  

"11 = 6 a  = ~ / G D t 2 .  

Then  the  s y s t e m  (1,5), which we will ana lyze  unde r  ze ro  init ial  condit ions,  t akes  the  f o r m  

Y d-~ = t - -  ~e e, ~ (0) = O, 

dO (3.1) 
~zz = ~ s e e  - - e ,  e CO) = 0. 

Mechanica l  Q u a s i s t e a d i n e s s  (6 >>1). In  th i s  c a s e  the e las t ic  deformat ion  is comple ted  long be fo re  the  
end of  the  p r o c e s s  of  t h e r m a l  s tab i l iza t ion  (t2<<t0) , and then the  i r r e v e r s i b l e  v i scous  component  m a k e s  the 
m a i n  cont r ibut ion  to the  to ta l  deformat ion$ i .e . ,  v i scous  flow o c c u r s .  I f  the  flow at  t > t 2 is cons idered ,  then a 
quas i s t eady  v a r i a t i o n  in t he  s t r e s s  o c c u r s  [4], de t e rmined  only by the t h e r m a l  fac to rs :  

~1 = exp (--0),  d O / d x  = xe -o - -  O, 0(0) = O. 

Hence  it is  seen  tha t  t h e r e  is  a s ingle  s tab le  m o d e  of  f low with s teady heating | d e t e rmined  by the  equali ty 
of  the  hea t  r e l e a s e  and the  hea t  t r a n s f e r :  | exp |  The s t r e s s  monotonical ly  app roaches  i t s  l imi t ing  
va lue  ~0=exp  (--| T h i s  a p p r o x i m a t e  solution is  val id fo r  all  ~ .  In the i so the rma l  c a s e  (~--*0) we have 
| and ~?o-~1. Th i s  c a s e  is  r e a l i z e d  in r eg ion  ]H when ~ > 61=3.07 G i g .  1). 

T h e r m a l  Quas i s t ead ines s  (6 << 1). In th is  c a s e  the s lowes t  p r o c e s s  is e las t ic  deformat ion ,  and the elast ic  
r e l axa t ion  t i m e  t2 m u s t  be  t aken  a s  the  t i m e  scale :  

t 
x = 6 x  = t/t._,. 

Then Eqs.  (3.1) t ake  the  f o r m  

dllldx' = 1 -  ~i co, ~t(0) = O, ; ~ d O / d x '  = ~rl2e e (-). 0(0) = O. 

T h e  t e m p e r a t u r e  va r i a t ion  is  f ine- tuned by the s t r e s s  var ia t ion,  and the  fol lowing quasis teady descr ip t ion  [4] 
is  valid:  

drl l !1 co, ~1 (0) = O: (3.2) 

Equat ion (3.3) is  so lvable  in the r eg ion  

0 < ~1 < 11,, = 1 / | / ~ .  
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In th is  c a s e  t h e r e  a r e  two solut ions fo r  the t e m p e r a t u r e :  | and O2(W) (Fig~ 2). Accord ing  to [4], one mus t  
t ake  the lower  b ranch  Oi(~} of the solution, where  |  < 1 and |  

The  t i m e  va r i a t ion  in the ~%ress is  found f r o m  (3.2) us ing the quadra tu re  

= ~ d~ (3.4) X'  I -- ~l exp 01 (11)" 
0 

This  solution has  qual i ta t ively  d i f ferent  na tu re s  depending on n .  

1. Le t  ~me = | /~]~ ~ i. In th is  c a s e  the in tegral  (3.4) d ive rges  at  some ~] = ~0 < ~m;  i .e. ,  the solution of 
t h e  s y s t e m  (3.2), (3.3) is defini te o v e r  '[he en t i re  t i m e  in te rva l  0 < x '  < ~.  The  s t r e s s  and t e m p e r a t u r e  grow 
monotonica l ly  and a r e  bounded: 0<  ~ < ~0 and 0< |  <| 

2. Le t  ~lme = | :  e/x < I. In th is  c a s e  the  in tegra l  (3.4) is definite and bounded in the en t i re  reg ion  
0 < ~ < ~ m .  This  m e a n s  that  the s t r e s s  r e a c h e s  a f inite value ~ = ~ m  in a f inite t i m e  x ~ :  

~ra 

X m ~  j i - - I  lexp0101)" (3.5) 
0 

Late r ,  when x > Xm, a quas is teady solut ion is  absent .  The flow has  an essen t ia l ly  nonsteady na ture .  T h e s e  
two types  of solut ions a r e  s epa ra t ed  by the c r i t i c a l  condition ~ ,  =e .  In Fig.  1 the reg ion  of n < n ,  with 
5 <<1 fa l ls  in reg ion  HI of s table  flow while the reg ion  of ~ > ~ ,  fa i l s  in reg ion  I of  s e l f - o s c i l l a t i o n s .  Thus ,  
in the given c a s e  the absence  of a quas i s teady  solution s ignif ies  the e m e r g e n c e  into the  mode  of s e l f - o s c i l l a -  
t ions .  The c r i t i ca l  condition is wr i t ten  in the following dimensional  f o rm:  

~tJoD'2/a ~ e. 

This  equation shows which p a r a m e t e r s  a f fec t  the fo rma t ion  of se l f -osc i l l a t ions .  

4 .  N o n s t e a d y  T h e r m a l  M o d e s  

A numer i ca l  solution of the  s y s t e m  (1.5) p e r m i t s  an invest igat ion of the  nonsteady p r o p e r t i e s  of the 
t h e r m a l  modes  of flow. C h a r a c t e r i s t i c  c u r v e s  of the  t i m e  var ia t ion  of the s t r e s s  and t e m p e r a t u r e  in d i f ferent  
r eg ions  of  the p a r a m e t e r s  ~ and 5 (see  F ig .  1) a r e  p r e s e n t e d  in Fig .  3a - c .  In reg ion  III of s table  flow the 
s t r e s s  and t e m p e r a t u r e  monotonica l ly  app roach  the s t e a d y - s t a t e  va lues ,  with the  h e a t i n g - t i m e  c u r v e s  having 
an inflection (Fig.  3a)o In reg ion  I I  the  e s t ab l i shmen t  of a s teady s ta te  is p r eceded  by damped  oscill .ations of 
the  s t r e s s  and t e m p e r a t u r e  having a s inusoidal  na ture  (Fig.  3b). The  f r equency  w of the osc i l la t ions  and the 
damping d e c r e m e n t  A a r e  eas i ly  e x p r e s s e d  through the  s t e a d y - s t a t e  va lues  ~0 and | of  the  s t r e s s  and t e m -  
p e r a t u r e :  
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] / ]00+t  ( ~T~ ~ (e t + , , 4  o = ~ r - - - ~ - - -  ' - Oo- o--T/': h = ~ k  o- - -~- j .  

Equations (2.1) allow one to calculate these quantities through the main parameters  x and 5. 

In region I of self-oscil lation all the flow charac te r i s t ics  have a relaxation charac te r  (Fig. 3c). The 
amplitude of the self-oscil lat ions increases  with grea ter  depth into region I. Sharp thermal self-accelerat ion 
and such great  heating of the fluid a re  possible in this case that such nonsteady modes must be considered 
as  explosive. In this ease  Eq. (3.5) determines the induction period.  

Thus, an explosive thermal  mode of flow of a viscoelastic fluid proves possible in the presence  of a 
constant deformation r a t e  03 =const). We note that in the flow of a viscous fluid in the model of a ro ta ry  
v iscos imeter  [5, 6], modes of hydrodynamic thermal  explosion prove to be possible only for a given s t ress  
on the moving cylinder.  This fundamental difference is connected with the possibility of a progressive in- 
c r ea s e  in heat r e l ea se  in the flow of a viscoelastic fluid under conditions of D =const, which is i l lustrated 
by Fig.  4 in which sections of a sharp increase  in the hea t - re lease  function are  seen. For  a viscous fluid 
under  these conditions the hea t - re lease  function is a decreasing function of t ime. 

An analysis of the (q, | and Ca, 0) phase diagrams (Fig. 5a, b) is interesting. Three  sections can be 
distinguished ra ther  c lea r ly  in the (q, | diagram: a section of progress ive heat re lease ,  an instantaneous 
decay due to a discharge of the s t ress ,  and a nstagnant zone n where the heat re lease  hardly var ies  owing to 
the compensation for  a decline in t empera ture  by an increase in s t ress .  The limiting cycle into which the 
solution of the system (1.5) is ncoiledW is shown in the  (~, | diagram. 

The most  important character is t ic  of the self-oscil lat ions is the period. On the basis of the analysis 
and t rea tment  of the numerical  resu l t s  we can offer the empirical equation 

X = 6-~ -xP" + 0.21), 

which allows one to calculate the oscillation period with an accuracy of 10-15% in the region of e < y. < 50 and 
0.03 < 5 < e-2= 0.135. 

5 .  S o m e  C o m m e n t s  

A mathematical model of elastic deformation and of the thermal factors  leading to the instability of 
viscosimetr ic  flow was analyzed above. But the described mechanism of self-osc~lat ions has a general cha r -  
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acter  and is interesting in connection with a number of other more complicated phenomena: se l f -o~i l ta t ions  
during the stretching of polymers  in the stage of uniform deformation [1] and the formation of a neck [7, 8], 
deep-focus earthquakes [9], etc. In some cases  this mechanism, while not being determining, can be accom- 
panying. This consideration was expressed by S. K. Godunov (in a discussion of [1]) in connection with self- 
osci l latory phenomena during explosive welding. 

The principal factors responsible for thermal instability of  the flow of a viscoelastic fluid were taken 
into account in the model discussed. It allows one to c lar i fy  the qualitative aspect of the phenomeD~m and to 
make some quantitative est imates.  Let us note the role  of some details not taken into account in the adopted 
model. Allowance for the inertia of the dynamometric system has practical  importance for a viscosimetric 
experiment.  This leads to a t ime dependence D(t) of the deformation ra te .  In this case damped oscillations 
having a sinusoidal nature a r e  p o s s ~ l e  even in an isothermal mode during the deformation of a purely viscous 
fluid. Their  superposition onto the self-oscillations of a viscoelastic fluid can only change the quantitative 
character is t ic  s of the process .  

The choice of the exponential tempera ture  dependence of the viscosity adopted in the present  work is an 
unimportant limitation. The appearance of self-oscillations can occur for  a wide c lass  of dependences satis-  
fying certain conditions [1]. The allowance for the tempera ture  dependence of the elastic modulus also plays 
a secondary role .  

In connection with the possibility of other mechanisms of instability of the flow of viscoelastic fluids 
it is interesting to compare  the conditions for their  occurrence.  Thus, in [10] the condition for  a transit ion 
from a stable mode of flow to an unstable mode of elastic turbulence is connected with the elastic Reynolds 
number Ree. The condition for thermal instability found in the present  repor t  is connected with the thermal 

t 2 R 2 cr i te r ion  n of (1.3) and (1.4), which can be represented in the form • = (~o/a ~) e~. Hence it is seen that 
different combinations of these mechanisms a re  possible: both their  simultaneous action and the m~tion of 
each of them separately. 
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